# always 语句块与组合逻辑
verilog always
块可用于时序逻辑和组合逻辑。在之前的文章中使用了一个 assign
语句展示了了一些组合逻辑的设计示例。接下来将使用 always
语句块探索同一组设计。
# 例1:简单组合逻辑
下面的代码实现了一个简单的组合逻辑,它有一个名为 z
的输出信号,类型为 reg
,只要灵敏度列表中的任何一个信号改变其值,就会更新它。敏感度列表在 @
运算符之后的括号内声明。
module combo ( input a, b, c, d, e,
output reg z);
always @ ( a or b or c or d or e) begin
z = ((a & b) | (c ^ d) & ~e);
end
endmodule
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
combo
模块使用综合工具综合为以下硬件原理图,可以看出组合逻辑是用数字门实现的。
注意
使用 always
块对组合逻辑进行建模时使用阻塞赋值(block assignment),关于阻塞(=
)和非阻塞(<=
)赋值后续会讲解,暂时按下不表。
# 测试台
module tb;
// Declare testbench variables
reg a, b, c, d, e;
wire z;
integer i;
// Instantiate the design and connect design inputs/outputs with
// testbench variables
combo u0 ( .a(a), .b(b), .c(c), .d(d), .e(e), .z(z));
initial begin
// At the beginning of time, initialize all inputs of the design
// to a known value, in this case we have chosen it to be 0.
a <= 0;
b <= 0;
c <= 0;
d <= 0;
e <= 0;
// Use a $monitor task to print any change in the signal to
// simulation console
$monitor ("a=%0b b=%0b c=%0b d=%0b e=%0b z=%0b",
a, b, c, d, e, z);
// Because there are 5 inputs, there can be 32 different input combinations
// So use an iterator "i" to increment from 0 to 32 and assign the value
// to testbench variables so that it drives the design inputs
for (i = 0; i < 32; i = i + 1) begin
{a, b, c, d, e} = i;
#10;
end
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
仿真日志:
a=0 b=0 c=0 d=0 e=0 z=0
a=0 b=0 c=0 d=0 e=1 z=0
a=0 b=0 c=0 d=1 e=0 z=1
a=0 b=0 c=0 d=1 e=1 z=0
a=0 b=0 c=1 d=0 e=0 z=1
a=0 b=0 c=1 d=0 e=1 z=0
a=0 b=0 c=1 d=1 e=0 z=0
a=0 b=0 c=1 d=1 e=1 z=0
a=0 b=1 c=0 d=0 e=0 z=0
a=0 b=1 c=0 d=0 e=1 z=0
a=0 b=1 c=0 d=1 e=0 z=1
a=0 b=1 c=0 d=1 e=1 z=0
a=0 b=1 c=1 d=0 e=0 z=1
a=0 b=1 c=1 d=0 e=1 z=0
a=0 b=1 c=1 d=1 e=0 z=0
a=0 b=1 c=1 d=1 e=1 z=0
a=1 b=0 c=0 d=0 e=0 z=0
a=1 b=0 c=0 d=0 e=1 z=0
a=1 b=0 c=0 d=1 e=0 z=1
a=1 b=0 c=0 d=1 e=1 z=0
a=1 b=0 c=1 d=0 e=0 z=1
a=1 b=0 c=1 d=0 e=1 z=0
a=1 b=0 c=1 d=1 e=0 z=0
a=1 b=0 c=1 d=1 e=1 z=0
a=1 b=1 c=0 d=0 e=0 z=1
a=1 b=1 c=0 d=0 e=1 z=1
a=1 b=1 c=0 d=1 e=0 z=1
a=1 b=1 c=0 d=1 e=1 z=1
a=1 b=1 c=1 d=0 e=0 z=1
a=1 b=1 c=1 d=0 e=1 z=1
a=1 b=1 c=1 d=1 e=0 z=1
a=1 b=1 c=1 d=1 e=1 z=1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
请注意,assign
和 always
两种方法都实现到相同的硬件逻辑中。
# 例2:半加器
半加器模块接受两个标量输入 a
和 b
,并使用组合逻辑来分配输出信号 sum
和进位 cout
。和由 a
和 b
之间的 XOR 驱动,而进位位由两个输入之间的 AND 获得。
module ha ( input a, b,
output sum, cout);
always @ (a or b) begin
{cout, sum} = a + b;
end
endmodule
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# 测试台
module tb;
// Declare testbench variables
reg a, b;
wire sum, cout;
integer i;
// Instantiate the design and connect design inputs/outputs with
// testbench variables
ha u0 (.a(a), .b(b), .sum(sum), .cout(cout));
initial begin
// At the beginning of time, initialize all inputs of the design
// to a known value, in this case we have chosen it to be 0.
a <= 0;
b <= 0;
// Use a $monitor task to print any change in the signal to
// simulation console
$monitor("a=%0b b=%0b sum=%0b cout=%0b", a, b, sum, cout);
// Because there are only 2 inputs, there can be 4 different input combinations
// So use an iterator "i" to increment from 0 to 4 and assign the value
// to testbench variables so that it drives the design inputs
for (i = 0; i < 4; i = i + 1) begin
{a, b} = i;
#10;
end
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
仿真日志:
a=0 b=0 sum=0 cout=0
a=0 b=1 sum=1 cout=0
a=1 b=0 sum=1 cout=0
a=1 b=1 sum=0 cout=1
1
2
3
4
2
3
4
# 例3:全加器
always
块可用于描述全加器的行为,以驱动输出 sum
和 cout
。
module fa ( input a, b, cin,
output reg sum, cout);
always @ (a or b or cin) begin
{cout, sum} = a + b + cin;
end
endmodule
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# 测试台
module tb;
reg a, b, cin;
wire sum, cout;
integer i;
fa u0 ( .a(a), .b(b), .cin(cin), .sum(sum), .cout(cout));
initial begin
a <= 0;
b <= 0;
$monitor("a=%0b b=%0b cin=%0b cout=%0b sum=%0b", a, b, cin, cout, sum);
for (i = 0; i < 8; i = i + 1) begin
{a, b, cin} = i;
#10;
end
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
仿真日志:
a=0 b=0 cin=0 cout=0 sum=0
a=0 b=0 cin=1 cout=0 sum=1
a=0 b=1 cin=0 cout=0 sum=1
a=0 b=1 cin=1 cout=1 sum=0
a=1 b=0 cin=0 cout=0 sum=1
a=1 b=0 cin=1 cout=1 sum=0
a=1 b=1 cin=0 cout=1 sum=0
a=1 b=1 cin=1 cout=1 sum=1
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# 例4:2x1 多路复用器
简单的 2x1 多路复用器使用三元运算符来决定应将哪个输入分配给输出 c
。如果 sel
为 1
,则输出由 a
驱动,如果 sel
为 0
,则输出由 b
驱动。
module mux_2x1 (input a, b, sel,
output reg c);
always @ ( a or b or sel) begin
c = sel ? a : b;
end
endmodule
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# 测试台
module tb;
// Declare testbench variables
reg a, b, sel;
wire c;
integer i;
// Instantiate the design and connect design inputs/outputs with
// testbench variables
mux_2x1 u0 ( .a(a), .b(b), .sel(sel), .c(c));
initial begin
// At the beginning of time, initialize all inputs of the design
// to a known value, in this case we have chosen it to be 0.
a <= 0;
b <= 0;
sel <= 0;
$monitor("a=%0b b=%0b sel=%0b c=%0b", a, b, sel, c);
for (i = 0; i < 3; i = i + 1) begin
{a, b, sel} = i;
#10;
end
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
仿真日志:
a=0 b=0 sel=0 c=0
a=0 b=0 sel=1 c=0
a=0 b=1 sel=0 c=1
1
2
3
2
3
# 例5:1x4 解复用器
解复用器使用 sel
和 f
输入的组合来驱动不同的输出信号。每个输出信号都是 reg
类型,并在 always
块内使用,该块会根据灵敏度列表中列出的信号的变化进行更新。
module demux_1x4 ( input f,
input [1:0] sel,
output reg a, b, c, d);
always @ (f or sel) begin
a = f & ~sel[1] & ~sel[0];
b = f & sel[1] & ~sel[0];
c = f & ~sel[1] & sel[0];
d = f & sel[1] & sel[0];
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
2
3
4
5
6
7
8
9
10
11
12
# 测试台
module tb;
// Declare testbench variables
reg f;
reg [1:0] sel;
wire a, b, c, d;
integer i;
// Instantiate the design and connect design inputs/outputs with
// testbench variables
demux_1x4 u0 ( .f(f), .sel(sel), .a(a), .b(b), .c(c), .d(d));
// At the beginning of time, initialize all inputs of the design
// to a known value, in this case we have chosen it to be 0.
initial begin
f <= 0;
sel <= 0;
$monitor("f=%0b sel=%0b a=%0b b=%0b c=%0b d=%0b", f, sel, a, b, c, d);
// Because there are 3 inputs, there can be 8 different input combinations
// So use an iterator "i" to increment from 0 to 8 and assign the value
// to testbench variables so that it drives the design inputs
for (i = 0; i < 8; i = i + 1) begin
{f, sel} = i;
#10;
end
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
仿真日志:
f=0 sel=0 a=0 b=0 c=0 d=0
f=0 sel=1 a=0 b=0 c=0 d=0
f=0 sel=10 a=0 b=0 c=0 d=0
f=0 sel=11 a=0 b=0 c=0 d=0
f=1 sel=0 a=1 b=0 c=0 d=0
f=1 sel=1 a=0 b=0 c=1 d=0
f=1 sel=10 a=0 b=1 c=0 d=0
f=1 sel=11 a=0 b=0 c=0 d=1
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# 例6:4x16 译码器
module dec_4x16 ( input en,
input [3:0] in,
output reg [15:0] out);
always @ (en or in) begin
out = en ? 1 << in: 0;
end
endmodule
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
# 测试台
module tb;
reg en;
reg [3:0] in;
wire [15:0] out;
integer i;
dec_4x16 u0 ( .en(en), .in(in), .out(out));
initial begin
en <= 0;
in <= 0;
$monitor("en=%0b in=0x%0h out=0x%0h", en, in, out);
for (i = 0; i < 32; i = i + 1) begin
{en, in} = i;
#10;
end
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
仿真日志:
en=0 in=0x0 out=0x0
en=0 in=0x1 out=0x0
en=0 in=0x2 out=0x0
en=0 in=0x3 out=0x0
en=0 in=0x4 out=0x0
en=0 in=0x5 out=0x0
en=0 in=0x6 out=0x0
en=0 in=0x7 out=0x0
en=0 in=0x8 out=0x0
en=0 in=0x9 out=0x0
en=0 in=0xa out=0x0
en=0 in=0xb out=0x0
en=0 in=0xc out=0x0
en=0 in=0xd out=0x0
en=0 in=0xe out=0x0
en=0 in=0xf out=0x0
en=1 in=0x0 out=0x1
en=1 in=0x1 out=0x2
en=1 in=0x2 out=0x4
en=1 in=0x3 out=0x8
en=1 in=0x4 out=0x10
en=1 in=0x5 out=0x20
en=1 in=0x6 out=0x40
en=1 in=0x7 out=0x80
en=1 in=0x8 out=0x100
en=1 in=0x9 out=0x200
en=1 in=0xa out=0x400
en=1 in=0xb out=0x800
en=1 in=0xc out=0x1000
en=1 in=0xd out=0x2000
en=1 in=0xe out=0x4000
en=1 in=0xf out=0x8000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32